FOXO1 in the ventromedial hypothalamus regulates energy balance.
نویسندگان
چکیده
The transcription factor FOXO1 plays a central role in metabolic homeostasis by regulating leptin and insulin activity in many cell types, including neurons. However, the neurons mediating these effects and the identity of the molecular targets through which FOXO1 regulates metabolism remain to be defined. Here, we show that the ventral medial nucleus of the hypothalamus (VMH) is a key site of FOXO1 action. We found that mice lacking FOXO1 in steroidogenic factor 1 (SF-1) neurons of the VMH are lean due to increased energy expenditure. The mice also failed to appropriately suppress energy expenditure in response to fasting. Furthermore, these mice displayed improved glucose tolerance due to increased insulin sensitivity in skeletal muscle and heart. Gene expression profiling and sequence analysis revealed several pathways regulated by FOXO1. In addition, we identified the nuclear receptor SF-1 as a direct FOXO1 transcriptional target in the VMH. Collectively, our data suggest that the transcriptional networks modulated by FOXO1 in VMH neurons are key components in the regulation of energy balance and glucose homeostasis.
منابع مشابه
FoxO1 in dopaminergic neurons regulates energy homeostasis and targets tyrosine hydroxylase
Dopaminergic (DA) neurons are involved in the integration of neuronal and hormonal signals to regulate food consumption and energy balance. Forkhead transcriptional factor O1 (FoxO1) in the hypothalamus plays a crucial role in mediation of leptin and insulin function. However, the homoeostatic role of FoxO1 in DA system has not been investigated. Here we report that FoxO1 is highly expressed in...
متن کاملSirt1 rescues the obesity induced by insulin-resistant constitutively-nuclear FoxO1 in POMC neurons of male mice
OBJECTIVE The hypothalamus is the brain center that controls the energy balance. Anorexigenic proopiomelanocortin (POMC) neurons and orexigenic AgRP neurons in the arcuate nucleus of the hypothalamus plays critical roles in energy balance regulation. FoxO1 is a transcription factor regulated by insulin signaling that is deacetylated by Sirt1, a nicotinamide adenine dinucleotide- (NAD(+) -) depe...
متن کاملPreserved Energy Balance in Mice Lacking FoxO1 in Neurons of Nkx2.1 Lineage Reveals Functional Heterogeneity of FoxO1 Signaling Within the Hypothalamus
Transcription factor forkhead box O1 (FoxO1) regulates energy expenditure (EE), food intake, and hepatic glucose production. These activities have been mapped to specific hypothalamic neuronal populations using cell type-specific knockout experiments in mice. To parse out the integrated output of FoxO1-dependent transcription from different neuronal populations and multiple hypothalamic regions...
متن کاملDisruption of type 3 adenylyl cyclase expression in the hypothalamus leads to obesity
Evidence from human studies and transgenic mice lacking the type 3 adenylyl cyclase (AC3) indicates that AC3 plays a role in the regulation of body weight. It is unknown in which brain region AC3 exerts such an effect. We examined the role of AC3 in the hypothalamus for body weight control using a floxed AC3 mouse strain. Here, we report that AC3 flox/flox mice became obese after the administra...
متن کاملNecdin controls Foxo1 acetylation in hypothalamic arcuate neurons to modulate the thyroid axis.
The forkhead transcription factor Foxo1 regulates energy homeostasis by modulating gene expression in the hypothalamus. Foxo1 undergoes post-translational modifications such as phosphorylation and acetylation, which modulate its functional activities. Sirtuin1 (Sirt1), a nicotinamide adenine dinucleotide-dependent protein deacetylase, regulates the acetylation status of Foxo1 in mammalian cells...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 122 7 شماره
صفحات -
تاریخ انتشار 2012